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This Brief Report examines Levy motion in a slit pore with sticky boundaries, i.e., boundaries that absorb
particles for a random amount of time. A set of equations is developed that can explicitly be solved for mean
travel distance to a plane for a particle released from the origin and can iteratively be used to compute mean
first-passage time �MFPT�. Results from the theory compare favorably with Monte Carlo simulations.
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This work is motivated by a desire to develop a theoreti-
cal formulation for the mean first-passage time �MFPT� for
Levy particles in a slit pore with sticky boundaries. The the-
oretical results provide design and data processing tools for
experimentalists.

Researchers often use a slit pore or a rectangular micro-
channel to experimentally or numerically study microbial dy-
namics �1–6�. Many species of microbes divide their time
between a motile free swimming phase and a sorbed phase in
which they may exist in a biofilm or attach singly to a sur-
face �4,7�. The free swimming cell provides an example of
transport that is both nonlinear and random. In a stagnant
fluid many microbes exhibit straight runs followed by
tumbles �random changes in direction� �7�, resembling the
typical trace of a Levy flight �8�. Apart from the study of
microbial transport, Levy motions have found use in a wide
range of physical problems, including turbulent diffusion
�9–12�, transport in heterogeneous porous media �13,14�,
stochastic interpolation of aquifer properties �15�, scattering
of waves �16�, and anomalous diffusion in rotating flows
�17�, to name a few.

The transition density for increments in a Levy motion is
given by an �-stable distribution �18�, � lies in �0,2�, with
time-dependent parameters. When �=2, the distribution is
Gaussian and a classical Brownian motion results. Gaussian
distributions and symmetric �-stable distributions look very
similar except that the latter is characterized by a heavier tail.
The heavy tail ensures that Levy motions are superdiffusive.

We conceptualize an infinite slit pore filled with fluid be-
ing driven by a pressure gradient in the x direction and thus
the velocity profile in the y direction normal to the walls is
parabolic �Poiseuille flow�. The initial distribution of Levy
particles is Dirac midway between the walls. The objective is
to compute the MFPT to a plane located a given distance
downstream from the source. Particle transport within this
flow field is modeled as a symmetric � f-stable Levy motion
with drift subject to sticky boundaries. The parameters that
define the Levy motion are � f which governs the thickness of
the tail of the density and is often called the characteristic
exponent, and � f which sets the width of the distribution and
is often known as the scaling factor. Both parameters can be
obtained experimentally from the finite-size Lyapunov expo-
nent �19,20�. Upon collision with the pore walls, particle
attachment occurs. Sticking times can vary from infinity �ir-
reversible sorption� to zero �instantaneous release�. The local
sorption time is modeled as the absolute value of an

�w-stable distribution with parameters �w and �w. This is an
extension of the model of Bonilla and Cushman �5� for
Brownian motion with sticky boundaries, whose local time
was also governed by an �-stable distribution. In passing, we
point out that the �-stable Levy motion is renormalizable and
hence upscalable to complex porous media �21�.

The nonlocal character of the fractional advection-
diffusion equation �the Fokker-Planck equation for an
�-stable Levy process� makes formulating realistic boundary
conditions in an Eulerian domain difficult. Indeed, most of
the literature available on theoretical evaluation of first-
passage times takes into account simple boundary conditions
where complete adsorption or reflection occurs in a one-
dimensional finite or semi-infinite domain �22–30�. Formulas
have been derived to compute the mean number of times a
site is visited during Levy flights �29� and the average time
spent by Levy flights on an interval with absorbing barriers
�26,27�. The solutions proposed for the transition density for
Levy motion in bounded domains vary from purely analyti-
cal �23–25� to semianalytic, wherein a modified fractional
advection-diffusion equation was derived and solved using a
finite difference technique �30�.

For the simplistic case of transport by Levy diffusion
without drift, it is obvious that at any moment snapshots of
the particle concentration will be symmetric about both the x
and y axis provided the source is midway between the walls.
The mean travel distance �MTD� in the x direction after a
fixed number of steps is zero because the number of particles
taking forward jumps is on average equal to the number of
particles taking backward jumps of the same magnitude. In
fact, the MTD will not be altered even if one integrates the
distribution along the x axis after every step and puts the
resultant mass back onto the vertical line passing through the
centroid of the distribution. The particles are independent
and hence making them converge on a line after every step
will not affect their motion in the subsequent steps. For the
purpose of computing the MTD, the two-dimensional �2D�
distribution can therefore be transformed to a 1D distribution
in the y direction. This conceptualization remains valid even
when there is drift because the velocity does not change in
the x direction. To compute the MTD in the presence of
parabolic drift, one can simply multiply the velocity at the
current y coordinate by the corresponding density at that lo-
cation and use that to calculate the incremental displacement
after each time step. The MTD after N steps can be com-
puted by adding all incremental displacements.
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Gitterman �23� derived a 1D �transverse direction in our
model� density in the presence of adsorbing walls,
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1
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�
k=1

�
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2b
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where � is the location of input in the transverse direction, n
is the number of steps a particle has taken up to time t, �t is
the time interval separating successive steps, 2b is the dis-
tance between absorbing barriers, and D
=�� / 
�t cos��� /2�
 is the diffusion coefficient for symmet-
ric Levy flights. The parameters � and � are the characteris-
tic exponent and scaling factor associated with the underly-
ing symmetric �-stable Levy process. It should be noted that
the value of the diffusion coefficient, D, is modified when a
2D problem is converted to a 1D problem. The direction of
displacement vectors is uniformly distributed on a unit circle.
The value of the y component of the mean unit vector in all
four quadrants is cos�� /4�. Hence the value of the scaling
parameter � f should be modified by a factor of cos�� /4� so
that only the component of displacement vector in the y di-
rection enters the computation of the probability density
function in Eq. �1�.

The above paragraph pertains to the absorbing boundary
case. To develop a framework for the sticky boundary, we
first concentrate on the instantaneous absorption and release
case �i.e., �w→0�. For this case, Eq. �1� can be applied to
find the density function along the transverse direction of a
pore as long as the particle is not released back into the same
pore. To account for all particles released back into the sys-
tem, and at the same time benefit from the form of Eq. �1�,
we visualize an infinite number of identical pores stacked
upon each other. Each slit pore has the same parabolic drift.
Particles originating from a point source located on the mid-
plane of the central pore �call it pore No. 1� diffuse sym-
metrically to reach either the top or the bottom wall �bound-
ary�. The particles are absorbed and instantaneously released,
but the releases are made in the next adjacent pore upwards
for the top wall, and the next adjacent pore downwards for
the bottom wall. These two pores take all particles released
from pore No. 1, and together they are labeled pore No. 2.
The top wall of the upper pore and the bottom wall of the
lower pore would release particles into the next adjacent up-
ward and downward pores �labeled pore No. 3�. Relying on
the symmetry of the problem, we allow particles exiting the
bottom wall of an upper pore to be instantaneously released
into the next pore adjacent to its lower counterpart, and vice
versa for particles exiting the top wall of the lower pore. It
should be noted that in the event of a particle getting ab-
sorbed at one of the walls, its release into the adjacent pore is
counted as the next step and not a continuation of the previ-
ous step. The process continues in this fashion for an infinite
number of pores, thus ensuring mass conservation. However,
unlike the central pore �pore No. 1� for which the source is
located on midplane, the location of sources ��� as a result of
first release in pore No. 2 and beyond is no longer fixed but

has an �-stable distribution with a stability index of � f and a
scaling factor of � f cos�� /4�. Therefore, except in pore No.
1, a particle has a finite probability of release from any point
in between the top and the bottom wall. Because of finite
widths of pores, a normalized �-stable distribution is used to
distribute particles between the two walls. Since an �-stable
distribution has heavy tails, the normalization may signifi-
cantly alter the shape of the distribution when the width �2b�
of the pore is small. Henceforth we assume a large b /� f.

The probability density function in the ith pore, as a result
of the mass released from a neighboring pore at mth step, can
be written as
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for all n
m
 i. Recall the earliest that a particle can appear
in the ith pore is after i−1 steps. The term 	i, which is a
function of � and m, is a measure of the distribution of the
fraction of particles entering the ith pore at the mth step. It
can be found by multiplying the differential releases from the
previous pore by the normalized �-stable distribution,

	i��,m� = f�f
���Ri−1, �3�

where

Ri−1�m� = ��
0

2b � �
l=i−1

m

Gi−1�y,m;l��dy , �4�

Ri−1 is interpreted as the mass injected into the ith pore at the
mth step.

Any algorithm to implement the above set of equations
begins in the central pore with 	1�� ,m� given by a Dirac
input at �=b. Thus the probability density function in the
central pore is readily known for all points in space and time
by a straightforward application of Eq. �1�. The chain of
computations progressively moves towards the next neigh-
bors by using Eqs. �4�, �3�, and �2� �in that order�, and then
summing the values obtained from Eq. �2� to find probability
density functions in the individual pores,

Gi�y,n� = �
m=i

n

Gi�y,n;m� . �5�

The total probability density function can be found by
summing Eq. �5� over all pores,

G�y,n� = �
i=1

�

Gi�y,n� . �6�

Several plots of solutions of Eq. �6� are shown in Fig. 1.
Particles diffuse symmetrically after starting as a Dirac input
from the midpoint between the walls. As time progresses,
particles accumulate near the walls. The density profiles be-
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come stationary with typically thicker ends and thinner
middle portions.

The MTD L̄ can be envisaged as the sum of incremental
displacements in the x direction after each time step. It can
be found by superimposing the velocity field onto G�y ,n�.
After N steps,

L̄ = �
n=1

N �
y=0

2b

G�y,n�v�y�dy . �7�

Equations �2�–�7� thus provide an explicit way to compute
the MTD when the net amount of time �number of steps, N�
is known. It is important to reiterate here that as of yet, the
generalized sticky boundary condition has not been included
in the analysis. The mean first passage time may be obtained
from the MTD to a plane by inversion and a standard itera-
tive scheme can be employed for this purpose. The value of
N can be found iteratively given the MTD is specified for the
plume centroid. The distance traveled by the centroid is the
same as the distance between the point source and the pas-
sage plane. By multiplying N by �t, the MFPT can be found
when boundaries are instantaneously releasing particles back
into the system.

To this point, G�y ,n� is not a function of boundary sticki-
ness. That is, after n steps, the transverse density profile will
always conform to Eq. �6� irrespective of the degree of
stickiness, although the time it requires for n steps to occur
will change as a function of the stickiness. Stickiness intro-
duces larger time intervals between successive steps, and this
random time is tied to the probability of hit �collision� be-
tween a particle and the pore walls. Parashar and Cushman
�31� developed an expression for the average number of hits
between source and the passage plane by neglecting the first
hit that occurs when particles originating on the midplane
reach one of the boundaries for the first time. However, if
total number of steps �N� is not too large, one may include
the steps required for first hit via the passage time equation
in Gitterman �23�,

Nsf =
4

�D�t
�2b

�
	�f

�
m=0

�
�− 1�m

�2m + 1�1+�f
. �8�

A modified formula for the average number of hits during
N steps of Levy process can be written as

Nhit = 1 +
N − Nsf

Ns + 1
, �9�

where NS is given as �31�

NS =

21+�f/2��1

2
+

� f

4
	��− 1/2�

� f
����− � f/4�

�2b

� f
	�f/2

. �10�

The denominator in Eq. �9� displaces a particle by a single
step before computing the number of steps needed to reach a
boundary. It is also assumed here that the expected value of
the ratio between the total number of steps and the steps
needed for a particle to reach one of the walls is the same as
the ratio between their respective expected values, which is
of course an approximation. When boundaries are sticky and
the waiting time is modeled as the modulus of an �w-stable
distribution with scaling factor �w, the net retardation R in-
troduced is computed by taking the product of Nhit and the
expected value of the �w-stable distribution,

R = Nhit
2��1 − 1/�w��w

�
. �11�

After N steps, the average total amount of time a particle
stays in the system is given by the sum of R and N�t. Hav-
ing found N iteratively using Eqs. �2�–�7�, the nondimen-

sional MFPT T̄ can be found,

T̄ =
vav�R + N�t�

L̄
, �12�

where vav is the average velocity

vav = �− �p

3�
	b2, �13�

and �p and � are the longitudinal pressure gradient and the
dynamic viscosity of the fluid.

We compare the nondimensional MFPT �Eq. �12�� with
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FIG. 1. Typical plots of G�y ,n� obtained by
solving Eq. �6� for four different values of num-
ber of steps �n�. Curves with higher values in the
middle correspond to relative smaller values of n,
i.e., n1n2n3n4.
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the values obtained by implementing the Monte Carlo
method of Parashar and Cushman �31�. The numerical model
is based on the Lagrangian perspective, that is, a stochastic
Levy driven ordinary differential equation with parabolic
drift is solved within the confines of a slit pore with sticky
boundaries.

Results obtained for the MFPT from Eq. �12� and the
Monte Carlo simulation for several data sets are plotted in
Fig. 2. The combinations of parameters were chosen to allow
for a broad range �1.2 to 1.7� in MFPT results. For the ideal

case of zero sorption, the MFPT approaches 1. The numeri-
cal and the theoretical results are consistent. The small dif-
ferences between the two approaches do not follow any rec-
ognizable trend. Possible sources of errors include �a� the
assumption of a large b over � f ratio; �b� introduction of a
normalized �-stable distribution in the theoretical model; �c�
coarse resolution when performing numerical integration; �d�
rounding and truncation errors in the Monte Carlo simula-
tion; and �f� limited computational resources to carry out
long-term simulations for a large number of particles in the
Monte Carlo framework.

To summarize, a theory for the MFPT of a Levy motion in
a slit pore with sticky boundaries was developed. The theory
is based on extending the solution for an absorbing boundary
condition to an infinite number of parallel pores that mimic
the sticky boundary condition. Equations �2�–�7� can be
solved for the number of steps N required to travel a given
distance from a source. Using N to find the average number
of hits a particle experiences between the source and the
passage plane, and by computing the expected value of wait-
ing time for sorbed particles on pore walls, Eq. �12� was used
to obtain the nondimensional MFPT. The results obtained
from the theory compare favorably to those obtained from a
Monte Carlo simulation which is far more computer inten-
sive.

J.H.C. acknowledges the National Science Foundation for
supporting this work under Contract No. 0620460-EAR.

�1� B. R. Philips, J. A. Quinn, and H. Goldfine, AIChE J. 40, 334
�1994�.

�2� S. A. Biondi, J. A. Quinn, and H. Goldfine, AIChE J. 44, 1923
�1998�.

�3� J. W. McClaine and R. M. Ford, Biotechnol. Bioeng. 78, 179
�2002�.

�4� M. J. Kim and K. S. Breuer, Phys. Fluids 16, L78 �2004�.
�5� F. A. Bonilla and J. H. Cushman, Phys. Rev. E 66, 031915

�2002�.
�6� F. A. Bonilla, N. Kleinfelter, and J. H. Cushman, Adv. Water

Resour. 30, 1680 �2007�.
�7� H. C. Berg, Phys. Today 53�1�, 24 �2000�.
�8� G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E.

daLuz, E. P. Raposo, and H. E. Stanley, Nature �London� 401,
911 �1999�.

�9� M. F. Shlesinger, B. J. West, and J. Klafter, Phys. Rev. Lett.
58, 1100 �1987�.

�10� F. Hayot, Phys. Rev. A 43, 806 �1991�.
�11� A. M. Reynolds and J. E. Cohen, Phys. Fluids 14, 342 �2002�.
�12� J. H. Cushman, M. Park, N. Kleinfelter, and M. Moroni, Geo-

phys. Res. Lett. 32, L19816 �2005�.
�13� M. Sahimi, Transp. Porous Media 13, 3 �1993�.
�14� K. C. Chen and K. C. Hsu, Water Resour. Res. 43, W12501

�2007�.
�15� S. Painter, Water Resour. Res. 32, 1323 �1996�.
�16� P. M. Drysdale and P. A. Robinson, Phys. Rev. E 70, 056112

�2004�.
�17� T. H. Solomon, E. R. Weeks, and H. L. Swinney, Physica D

76, 70 �1994�.
�18� A. Janicki and A. Weron, Simulation and Chaotic Behavior of

�-Stable Stochastic Processes �Marcel Dekker, New York,
1994�.

�19� N. Kleinfelter, M. Moroni, and J. H. Cushman, Phys. Rev. E
72, 056306 �2005�.

�20� R. Parashar and J. H. Cushman, Phys. Rev. E 76, 017201
�2007�.

�21� M. Park, N. Kleinfelter, and J. H. Cushman, Geophys. Res.
Lett. 33, L01401 �2006�.

�22� P. M. Drysdale and P. A. Robinson, Phys. Rev. E 58, 5382
�1998�.

�23� M. Gitterman, Phys. Rev. E 62, 6065 �2000�.
�24� R. Metzler and J. Klafter, Physica A 278, 107 �2000�.
�25� G. Rangarajan and M. Ding, Phys. Rev. E 62, 120 �2000�.
�26� S. V. Buldyrev, S. Havlin, A. Ya. Kazakov, M. G. E. da Luz, E.

P. Raposo, H. E. Stanley, and G. M. Viswanathan, Phys. Rev. E
64, 041108 �2001�.

�27� S. V. Buldyrev, M. Gitterman, S. Halvin, A. Ya. Kazakov, M.
G. E. da Luz, E. P. Raposo, H. E. Stanley, and G. M.
Viswanathan, Physica A 302, 148 �2001�.

�28� B. Dybiec, E. Gudowska-Nowak, and P. Hanggi, Phys. Rev. E
73, 046104 �2006�.

�29� M. Ferraro and L. Zaninetti, Phys. Rev. E 73, 057102 �2006�.
�30� N. Krepysheva, L. Di Pietro, and M.-C. Neel, Phys. Rev. E 73,

021104 �2006�.
�31� R. Parashar and J. H. Cushman, J. Comput. Phys. 227, 6598

�2008�.

y = 0.984x
R2 = 0.972

1.0

1.2

1.4

1.6

1.8

1.0 1.2 1.4 1.6 1.8

MFPT From Theoretical Model (Equation 12)

M
FP
T
Fr
om

N
um

er
ic
al
M
od
el
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the MFPT for 16 data sets.
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